Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17573, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845245

RESUMO

The structures, strain fields, and defect distributions in solid materials underlie the mechanical and physical properties across numerous applications. Many modern microstructural microscopy tools characterize crystal grains, domains and defects required to map lattice distortions or deformation, but are limited to studies of the (near) surface. Generally speaking, such tools cannot probe the structural dynamics in a way that is representative of bulk behavior. Synchrotron X-ray diffraction based imaging has long mapped the deeply embedded structural elements, and with enhanced resolution, dark field X-ray microscopy (DFXM) can now map those features with the requisite nm-resolution. However, these techniques still suffer from the required integration times due to limitations from the source and optics. This work extends DFXM to X-ray free electron lasers, showing how the [Formula: see text] photons per pulse available at these sources offer structural characterization down to 100 fs resolution (orders of magnitude faster than current synchrotron images). We introduce the XFEL DFXM setup with simultaneous bright field microscopy to probe density changes within the same volume. This work presents a comprehensive guide to the multi-modal ultrafast high-resolution X-ray microscope that we constructed and tested at two XFELs, and shows initial data demonstrating two timing strategies to study associated reversible or irreversible lattice dynamics.

2.
Nature ; 620(7974): 557-561, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587300

RESUMO

Supercooled water droplets are widely used to study supercooled water1,2, ice nucleation3-5 and droplet freezing6-11. Their freezing in the atmosphere affects the dynamics and climate feedback of clouds12,13 and can accelerate cloud freezing through secondary ice production14-17. Droplet freezing occurs at several timescales and length scales14,18 and is sufficiently stochastic to make it unlikely that two frozen drops are identical. Here we use optical microscopy and X-ray laser diffraction to investigate the freezing of tens of thousands of water microdrops in vacuum after homogeneous ice nucleation around 234-235 K. On the basis of drop images, we developed a seven-stage model of freezing and used it to time the diffraction data. Diffraction from ice crystals showed that long-range crystalline order formed in less than 1 ms after freezing, whereas diffraction from the remaining liquid became similar to that from quasi-liquid layers on premelted ice19,20. The ice had a strained hexagonal crystal structure just after freezing, which is an early metastable state that probably precedes the formation of ice with stacking defects8,9,18. The techniques reported here could help determine the dynamics of freezing in other conditions, such as drop freezing in clouds, or help understand rapid solidification in other materials.

3.
J Synchrotron Radiat ; 26(Pt 2): 346-357, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855242

RESUMO

The Macromolecular Femtosecond Crystallography (MFX) instrument at the Linac Coherent Light Source (LCLS) is the seventh and newest instrument at the world's first hard X-ray free-electron laser. It was designed with a primary focus on structural biology, employing the ultrafast pulses of X-rays from LCLS at atmospheric conditions to overcome radiation damage limitations in biological measurements. It is also capable of performing various time-resolved measurements. The MFX design consists of a versatile base system capable of supporting multiple methods, techniques and experimental endstations. The primary techniques supported are forward scattering and crystallography, with capabilities for various spectroscopic methods and time-resolved measurements. The location of the MFX instrument allows for utilization of multiplexing methods, increasing user access to LCLS by running multiple experiments simultaneously.

4.
Sci Data ; 4: 170055, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28440794

RESUMO

We provide a detailed description of selenobiotinyl-streptavidin (Se-B SA) co-crystal datasets recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) for selenium single-wavelength anomalous diffraction (Se-SAD) structure determination. Se-B SA was chosen as the model system for its high affinity between biotin and streptavidin where the sulfur atom in the biotin molecule (C10H16N2O3S) is substituted with selenium. The dataset was collected at three different transmissions (100, 50, and 10%) using a serial sample chamber setup which allows for two sample chambers, a front chamber and a back chamber, to operate simultaneously. Diffraction patterns from Se-B SA were recorded to a resolution of 1.9 Å. The dataset is publicly available through the Coherent X-ray Imaging Data Bank (CXIDB) and also on LCLS compute nodes as a resource for research and algorithm development.

5.
Nat Commun ; 7: 13388, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27811937

RESUMO

Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity and wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.


Assuntos
Proteínas de Bactérias/ultraestrutura , Biotina/análogos & derivados , Cristalografia por Raios X/métodos , Elétrons , Lasers , Selênio/química , Proteínas de Bactérias/química , Biotina/química , Cristalografia por Raios X/instrumentação , Estudos de Viabilidade , Modelos Moleculares , Conformação Proteica
6.
J Phys Chem Lett ; 7(11): 2055-62, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27182751

RESUMO

Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below -100 MPa were reached in the drops. We model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.

7.
J Synchrotron Radiat ; 22(3): 514-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931062

RESUMO

The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump-probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.


Assuntos
Cristalografia por Raios X/instrumentação , Lasers , Imagem Molecular/instrumentação , Aceleradores de Partículas/instrumentação , Espectrometria por Raios X/instrumentação , Raios X , California , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Iluminação/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...